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Motion direction is represented as a bimodal
probability distribution in the human
visual cortex

Andrey Chetverikov 1,2 & Janneke F. M. Jehee 1

Humans infer motion direction from noisy sensory signals. We hypothesize
that to make these inferences more precise, the visual system computes
motion direction not only from velocity but also spatial orientation signals – a
‘streak’ createdbymoving objects.We implement this hypothesis in a Bayesian
model, which quantifies knowledge with probability distributions, and test its
predictions using psychophysics and fMRI. Using a probabilistic pattern-based
analysis, we decode probability distributions ofmotion direction from trial-by-
trial activity in the human visual cortex. Corroborating the predictions, the
decoded distributions have a bimodal shape, with peaks that predict the
direction andmagnitude of behavioral errors. Interestingly, we observe similar
bimodality in the distribution of the observers’ behavioral responses across
trials. Together, these results suggest that observers use spatial orientation
signals when estimatingmotion direction. More broadly, our findings indicate
that the cortical representation of low-level visual features, such as motion
direction, can reflect a combination of several qualitatively distinct signals.

Estimating the direction of motion of an object is arguably one of the
most ubiquitous tasks. Whether it is to catch a ball, cross a busy street,
or make sure that your toddler does not run into something, the visual
system needs to quickly and efficiently parse the retinal input and infer
the direction in which things are moving. Yet, this task is also very
difficult because of noise. The visual system needs to rapidly infer an
object’s direction of motion, despite occlusion of motion paths, chan-
ges in motion speed and direction, and additional variability in neural
signals. As a result of all these sources of variance, estimates of motion
direction are necessarily uncertain – any given pattern of neural activity
is almost always consistent with multiple interpretations.

Are there ways in which the nervous system could reduce this
uncertainty in the interpretation of its sensory signals? One potential
strategy for reducing uncertainty could be to use additional visual cues
when inferring motion direction. Using multiple cues to obtain a more
precise estimate of a visual feature is a well-known strategy observed
for slant, depth, and shape perception, among others1. Although
motion direction is often thought of as a “simple” visual feature, the
underlying inference steps need not be simple from a computational

perspective and could involve cues other than velocity. For example,
the nervous system could rely on “motion streaks” in its estimates of
direction2 – a “streak” is a smeared representation of a fast-moving
objectdue to the temporal integrationof signals along itsmotionpath.
From a computational standpoint, combining such spatial orientation
signals with the information provided by velocity-tuned neurons
would decrease the uncertainty in inferred motion direction (as also
illustrated in simulations below). Although the noise in velocity and
spatial orientation signals is probably correlated (e.g., due to common
retinal factors), integrating the information provided by both sources
would still be beneficial as long as the correlation between them is not
perfect (see1,3,4 for similar rationale). While behavioral studies suggest
that observers are sensitive to motion streaks (e.g., 2,5,6), direct neural
evidence for streak-based computations in human motion perception
is currently lacking.

Here, we investigate the neural and computational basis of human
motion perception, using a combination of computational modeling,
psychophysics, and functional MRI. To arrive at a set of quantitative
predictions, we first implemented a Bayesian observermodel that uses
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both velocity and spatial orientation signals in its estimates of motion
direction. Themodel quantifies its beliefs about direction ofmotion as
a probability distribution, wherein each direction of motion (inter-
pretation) is assigned a probability of being true. As we will illustrate
below, the observer model makes a surprising prediction: when an
observer relies on both velocity and orientation signals, their belief
should be represented as a bimodal probability distribution, with
peaks around the true and opposite motion direction. We tested this
prediction using fMRI in combination with a generative model-based
decoding technique to extract probability distributions from cortical
activity7. Interestingly, this revealed that motion direction is repre-
sented as a bimodal probability distribution in visual areas V1, V2, V3,
and V4, as well as motion-sensitive middle temporal cortex (hMT+).
Notably, the shape of the decoded distribution (peak locations and
entropy) predictedboth thedirection andmagnitudeof the behavioral
errors made by the participants. The observer model furthermore
predicted a perceptual illusion that we subsequently tested and found
support for in a follow-up behavioral study: when sensory information
is particularly noisy, participants sometimes perceive the stimulus as if
it is moving in the direction opposite to the true direction of motion.
Taken together, our findings provide strong evidence that spatial
orientation signals are used by the nervous system in its judgments of
motion direction and demonstrate complexity in the visual processing
of a seemingly simple visual feature.

Results
Bayesian observer model
Visual perception is necessarily uncertain. Because of noise and
ambiguity, it is impossible to infer with absolute precision the stimulus
from the sensory response. Instead, any sensory measurement is
consistent with a whole range of different interpretations. What stra-
tegies could the brain employ to reduce this uncertainty and improve
the precision of its sensory estimates?
One well-known strategy to reduce uncertainty is to use additional
sources of information. For example, when the observer’s task is to
determine an object’s direction of motion from noisy sensory mea-
surements, combining velocity signals with spatial orientation signals
could help to decrease ambiguity2. Orientation signals are useful
because they convey information about the trajectory of a moving
object. That is, if the observer integrates the object’s position over
time, the orientation of the resulting path (a motion “streak”) will be
aligned with motion direction. Assuming noise is sufficiently inde-
pendent between the signals, orientation signals could provide addi-
tional information about an object’smotion direction and improve the

observers’ estimates. Indeed, given known neural response properties
in visual areas8–11, it seems likely that velocity and spatial orientations
signals remain largely independent in cortex. Here, we develop a
Bayesian observer model that implements this strategy. The model
results in a set of concrete predictions that we will test in experiments.

The observer’s task is to infer the direction ofmotion of a stimulus
s using two types of signals: velocity and spatial orientation. These
signals are corrupted by noise (Fig. 1a). Thus, across trials, the sensory
measurements xV (based on velocity) and xO (based on orientation)
can take different values and are best described by a probability dis-
tribution (the generative distribution). For the velocity measurements
xV , we assume that the probability distribution of their values,
p xV j s� �

, is a vonMises (circular normal) distributionwith varianceσ2
V .

The values of the spatial orientation measurements, p xO j s� �
, also

follow a von Mises distribution but wrapped in the 180° orientation
space and with variance σ2

O.
To infer the object’s direction of motion from the sensory signals,

the Bayesian observer uses knowledge of these generative distribu-
tions to compute a likelihood function. Given the velocity measure-
ments alone, the likelihood function LV s j xV

� �
=p xV j s� �

. When
computed as a function of s, the likelihood reflects the range of pos-
sible motion directions that are consistent with the velocity mea-
surement xV . The observer similarly computes a likelihood function
from the orientation signals. Notably, compared to the velocity mea-
surements, the orientation signals are even more ambiguous with
respect to motion direction, because a given orientation is consistent
with two ranges of opposite motion directions. For example, a snow-
flake moving left and a snowflake moving right move along the same
horizontal motion path. This is why the likelihood function given the
orientation measurement is bimodal, with two peaks that indicate
opposite motion directions:

LO s j xO

� �
=
1
2
p xO j s� �

+
1
2
p xO +π j s� � ð1Þ

How should the observer make use of all this information so as to
determine the object’s direction of motion? Both likelihood functions
provide information about the stimulus, and the Bayesian observer
combines these to arrive at a better estimate. Specifically, under the
assumption that the noise is independent, the observer simply multi-
plies the two likelihoods (see Supplementary Fig. 1 for predictions
when noise is correlated). The observer then uses Bayes rule to infer
the posterior distribution, p s j xO, xV

� �
, which describes the range of

possible directions of motion given the twomeasurements. Assuming

Fig. 1 | Bayesian observer model combining velocity and orientation signals to
determine motion direction. a The observer (a bird) receives velocity and
orientation signals (xV and xO) elicitedby the falling snowflakes. Orientation signals
provide cues about the trajectory of the snowflake. Based on each of these noisy
measurements, the observer computes the likelihood ofmotion direction, which is
described by the likelihood functions LV sð Þ and LO sð Þ. Notably, the orientation cue
is consistent with two oppositemotion directions (i.e., a snowflakemoving left and
onemoving right have the same trajectory), and therefore has a bimodal likelihood
function. The observer combines the two likelihood functions to compute the

posterior distribution p s j xV , xO
� �

, which describes how probable differentmotion
directions are given the combination of cues. The observer selects the most likely
stimulus (maximum a posteriori, ŝMAP ) from the posterior distribution as their final
estimate of motion direction. Photo courtesy of Bill Geisler. b Compared to an
observer who uses velocity measurements only (blue), combining orientation and
velocity cues (orange) reduces both uncertainty and behavioral variability. The
entropy (uncertainty) of the velocity likelihood is the same for each pair of dots
connectedwith an arrow, but overall uncertainty and behavioral variability are not.
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that the prior pðsÞ is flat, p s j xO, xV

� � / LV s j xV
� �

LO s j xO

� �
. While the

prior is likely not flat for orientation signals12, this assumptiondoes not
affect any of our conclusions. The peak of the posterior function is the
most likely direction of motion, and we assume that this is the obser-
ver’s decision (maximum a posterior estimate, ŝMAP ; please see Meth-
ods, Bayesian observer models, for a discussion of other readout
strategies). We can take the entropy of the distribution (the Shannon
information for a given probability distribution; see Methods) as a
measure of the degree of uncertainty in this estimate. Because the
sensory measurements vary from trial to trial, so do the observer’s
estimates of the direction of motion. Across trials, this results in a
distribution, pðŝMAP j sÞ, which we will call the behavioral response
distribution. As we will demonstrate in simulations, uncertainty is
reduced when combining the two sources of information. For beha-
vior, the integration of velocity and orientation signals is beneficial as
well, but will also lead to a surprising bimodal pattern of responses
under some conditions that we discuss below.

We simulated the trial-by-trial decisions of theBayesian observer
when presented with noisy stimuli. Specifically, we used different
levels of noise in the observer’s measurements to illustrate the pre-
dictions. We computed the posterior distribution, quantified uncer-
tainty, and obtained the observer’s behavioral responses. In what
follows, we start with the description of the simulations in the low-
stimulus-noise regime, which corresponds to our fMRI study design.
Later, we will describe the results of the simulations in a high-
stimulus-noise regime, which matches the design of a follow-up
behavioral experiment.

First, we show that combining velocity and orientation signals is
indeed beneficial for observers. To this end, we compare two different
model observers. The first observer infers motion direction from
velocity signals only, while the second one uses both orientation and
velocity signals. We analyzed the relationship between behavioral
variability and uncertainty for each model observer, with the velocity
and orientation standard deviation (σV and σO) parameters spanning
the range from 3° to 100° to ensure that our predictions hold for
different parameter settings. We found that, in general, behavioral
variability increases when uncertainty increases (Fig. 1b). In addition,
the posterior distribution computed by the velocity-only observer
always indicates greater levels of uncertainty than the posterior
obtained by the observer who combines velocity and orientation
likelihoods. This is because the orientation signals provide additional
information as to whichmotion directions are likely. This reduction in
uncertainty also results in improved behavior. That is, the more
information (the less uncertainty) there is, the better the observer’s
estimates of motion direction. Thus, behavioral variability decreases
when both velocity and orientation signals are used. Overall, the
simulations demonstrate that combining the velocity and spatial
orientation signals is beneficial for the observer’s behavior: it decrea-
ses uncertainty, which reduces the variability of behavioral responses.

A secondprediction of themodel is that the posterior distribution
could become bimodal when the orientation likelihood is combined
with a sufficiently uncertain velocity likelihood. In other words, the
inference process results in a posterior distribution that has two peaks
(see Fig. 1c). In our simulations, we varied uncertainty bymanipulating
the amount of noise in the velocitymeasurements (σV >30� for our set
of simulations; seeMethods for details).When velocity signals indicate
high uncertainty (so the likelihood function LV s j xV

� �
is wide), the

orientation signal dominates in the posterior, resulting in a bimodal
distribution. At the extreme, when the velocity signals provide no
information at all (the velocity likelihood function is flat), the posterior
becomes fully proportional to a bimodal orientation likelihood func-
tion (Supplementary Fig. 2). Of course, this is an extreme scenario in
which the internal representation strongly deviates from the physical
stimulus (for example, a lowcoherence stimulus combinedwith strong
attentional effects on motion streaks might create a representation

that is dominated by orientation signals). But even in less extreme
noise scenarios, when velocity signals do provide some imprecise
clues to motion direction (i.e., the velocity likelihood function is wide,
but not flat), bimodality stemming from the presence of orientation
signals is still visible, because the ambiguity of the orientation signal
cannot be fully resolved by the velocity signals. This bimodal shape is
exclusively tied to the presence of orientation signals, as the velocity-
only observer always arrives at unimodal posteriors, even with
increased velocity uncertainty. Notably, bimodalposteriors canalsobe
observed when stimulus noise is low but there is additional noise from
other sources, such as fMRI noise (see details in Methods). That is, the
noise incurred by fMRI measurements further increases the uncer-
tainty associated with each of the two cues (Supplementary Fig. 3) and
can result in bimodality at the level of voxels – even when at the neural
level the posterior is unimodal. To account for this in our predictions,
we included fMRI noise in our simulations of this experiment
(see Eq. 30). We verified that our predictions are qualitatively the same
when the posterior distribution is estimated directly from voxel
population activity (see Supplementary Methods). The bimodality in
the observed posterior is particularly evident when averaging dis-
tributions across trials: When orientation signals are present, the
resultingmeanposterior distribution is bimodalwith peaks around the
true and opposite motion directions (Fig. 2a).

The bimodality in the shape of the posterior can be observed not
onlywhen averaged across trials, but alsoon a trial-by-trial basis for the
observerwho uses both sources of information. The exact shape of the
posterior varies from trial to trial and can be quantified by fitting a
mixture of two von Mises components (basis functions) to the pos-
terior, in linewith its analytic description (seeMethods). Parameters of
the von Mises basis functions provide a convenient quantification of
the posterior shape and allow us to trace the bimodality in the pos-
terior at the single-trial level. Specifically, we analyzed the location of
the peaks of the two components and plotted for each possible com-
bination of locations the probability of observing a trial with this
particular combination (i.e., the joint probability distribution of the
component locations, Fig. 2b). Three clusters of trials are readily
observed when looking at this plot. The first large cluster has two
components co-located around the true motion direction. This com-
bination of components corresponds to a unimodal posterior. In the
second large cluster, the larger component is located around the true
direction and a smaller one is located around the opposite direction of
motion. This cluster is important for us, as it describes a bimodal
posterior with a larger peak around the true direction. Finally, a small
third cluster also corresponds to a bimodal posterior, but in this case
the velocity measurement just happened to be closer to the opposite
motion direction because of random noise. Accordingly, the larger
component is located around the opposite direction, and the smaller
fitted peak lies closer to the true direction of motion. This cluster of
trials also signifies that orientation signals are present, but it might be
difficult to detect inour empirical analyses, because it comprises only a
small number of trials (about 0.3% in our simulations). In sum, when
the observer computes a posterior distribution from two likelihoods,
one obtained from velocity and the other from spatial orientation
signals, then we should observe a large cluster of bimodal trials.

For the third prediction, we turned to the observer’s behavioral
errors. We found that the direction and magnitude of the observer’s
behavioral errors shouldbe correlatedwith the locationof either of the
two peaks in a bimodal posterior. Fig. 2c shows the error in the
observer’s simulated behavioral estimates of direction of motion (i.e.,
the difference between the MAP estimate and the true motion direc-
tion) as a function of the location of each peak in the posterior dis-
tribution. For the observer who uses both sources of information,
there is a positive relationship between either peak location and the
direction and magnitude of the behavioral error (Fig. 2c, left). That is,
if the first peak is shifted clockwise relative to the true direction of
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motion (or the second peak is shifted clockwise relative to the oppo-
site direction), the observed response is also shifted clockwise relative
to the true direction. In contrast, for an observer whose representa-
tions are bimodal, but who nonetheless uses only velocity (and not
orientation) signals, the relationshipbetween the secondpeak location
and behavioral errors has the opposite sign (Fig. 2c, right). This inverse
relationship arises because the second orientation peak is “pulled”
towards the velocity peak in the posterior. This gives rise to a negative
circular correlation between the location of the second peak and
the velocity estimate: when the velocity estimate shifts clockwise
relative to the true stimulus, the second peak shifts towards it, coun-
terclockwise. When the observer’s behavioral response is based on
velocity signals alone, the behavioral response also has this inverse
relationship with the second peak of the integrated posterior. Thus,
the observed relationship between the second peak location and
behavioral errors should enable us to determine whether or not
orientation signals are used in the observer’s estimates of direction of
motion; in other words, whether the bimodality in brain signals is
behaviorally relevant.

Finally, we turned to a high-noise regime, in which the level of
noise associated with the observer’s measurements is high (note that
this refers to noise in the neural signals, and not the additional noise
due to fMRI recordings). This noise regimematches that of our follow-
up behavioral experiment. The model predicts that under these con-
ditions, the behavioral response distribution should become bimodal.
Specifically, the model shows that if the observer uses both sources of
information, then bimodality should becomemore pronounced under
high levels of noise. Fig. 2d shows the expected distribution of beha-
vioral responses across trials for this condition; that is, the probability
of an estimated motion direction given the true direction of motion.
Interestingly, we observed a striking bimodal response distribution
across trials. In other words, the observer cannot always reliably tell
apart the true and the opposite motion direction in the posterior
distribution, and sometimes mistakes the opposite direction for the
true one. Altogether, this means that if the task becomes sufficiently
difficult, we should sometimes observe a behavioral response that
matches the stimulus in its orientation but not its direction of motion.
We additionally analyzed the relationship between the shape of the

posterior distribution and the observer’s behavioral responses, but
found that it would not allow us to further adjudicate between the
models (Supplementary Fig. 4). For this reason, we focus exclusively
on the behavioral response distribution here, as these data are most
informative.

In sum, when the observer uses velocity and spatial orientation
signals, the model makes the following predictions:
1. Uncertainty (posterior entropy) should be linked to behavioral

variability.
2. The posterior distribution should be of bimodal shape (with the

peaks at the true and the opposite motion direction), both when
averaged across trials and for a large portion of trials in trial-by-
trial analyses.

3. Both peaks of the posterior should predict behavioral responses;
that is, the direction and the magnitude of the observer’s errors.

4. High levels of uncertainty should result in a bimodal response
distribution in behavior.

With these predictions in hand, we now turn to the experimental
data to see if they hold true.

fMRI study
How do human observers represent and estimate motion direction?
We ran an fMRI study and a follow-up behavioral experiment to
address this question. In the fMRI study, we used random-dot kine-
matograms with 100% coherent motion. Because of relatively low
levels of neural variability, we predicted that, behaviorally, this would
correspond to the low-noise motion regime of the simulations. Parti-
cipants viewed dots moving in a single direction in an annular window
for 1.5 seconds. After a brief delay period, they reported the direction
ofmotion of the stimulus by rotating a bar presented atfixation. Under
these conditions, the task was relatively easy for the participants,
whose behavior showed a mean absolute error of M = 6.18°, 95% CI =
[5.72°, 6.62°]. For each trial of fMRI data, we decoded a probability
distribution over motion direction from patterns of BOLD activity in
visual areas V1, V2, V3, hV4 and hMT+ combined, using a probabilistic
decoding technique7,17. We took the most likely value of the decoded
distribution as the decoded direction of motion, and its entropy

Fig. 2 | Predictions of the Bayesian observer model. a For low uncertainty
(entropy) levels of the velocity likelihood (σV ≤ 30° ), the posterior distribution
(averaged across trials) is unimodal, centered at the presented stimulus (at 0°).
However, for high uncertainty levels (σV > 30° ), it becomes bimodal with a second
peak at the opposite motion direction (at 180°). b The trial-by-trial posterior dis-
tribution can be described as a weighted combination of two von Mises compo-
nents. At high noise levels, the joint distribution of the locations of these
components has three clusters (brighter colors indicate a higher probability of
observing a certain combination of component locations). The largest cluster
consists of bimodal trials with a larger component located around the presented
motion direction (0°) and a smaller one around the opposite direction (180°). A
smaller cluster contains unimodal trials (both components around the presented
direction). The third cluster corresponds to trials with the larger component
located around the opposite and the smaller around the presented direction. Noise
levels here and in the next panel were based on empirically observed distributions

under the assumption of additive noise in the MRI measurements, see Methods.
c For the Bayesian observer model inferring motion direction from both velocity
and spatial orientation signals (“MAP readout”), the location of either of the two
peaks correlates positively with the direction and magnitude of errors in the
observer’s behavioral response. When the first peak is shifted clockwise relative to
the true direction ofmotion (or the second peak relative to the opposite direction),
the observed response should also be shifted clockwise relative to the true direc-
tion. In contrast, for an observer with a bimodal probabilistic representation of
motion direction but who uses only velocity and not spatial orientation signals
(“velocity-only readout”), the correlation between the second peak location and
behavioral errors has the opposite sign. d In a high-uncertainty regime, the dis-
tribution of behavioral responses for the Bayesian observer becomes bimodal as
well (brighter colors indicate a higher probability of a given behavioral response for
a given stimulus). That is, the Bayesian observer sometimesmistakes the presented
motion direction for the opposite one.
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reflected the degree of decoded uncertainty. Please note that the
reliability of the twocues likely changeswith stimulus parameters such
as motion speed and dot size, so our results likely depend on the
specific dot size and chosen speed of 7 deg/s.

To benchmark the decoding approach, we first tested the degree
to which the decoded direction of motion matched the true motion
direction of the stimulus (Fig. 3a). The decoded and true directions
were significantly correlated, with a mean circular correlation coeffi-
cient across participants of r = 0.72, 95% CI= [0.62, 0.80], BF =
2:82× 105 (Bayes factors above 3.2 are usually taken to indicate sub-
stantial evidence, above 10 – strong, and above 100 – decisive
evidence13). We then tested the decoder’s assumptions about the
covariance structure of the data. To the extent that the model
assumptions match the true generative structure of the data, the
decoded uncertainty should be correlated with the magnitude of the
error in the decoded direction of motion. Indeed, we found this to be
the case (BF > 10170). Together, thesefindings indicate that thedecoder
provides a reasonable estimate of the aggregated sources of uncer-
tainty in the data.

To test the degree to which the algorithm also captured neural
sources of uncertainty (as opposed to imprecision due to the fMRI
measurements), we then turned to behavior. Specifically, we reasoned
that a more precise neural representation in cortex should result in
more precise behavior (as also quantified by our simulations, see
Fig. 1b). To test this relationship and benchmark the degree to which
the decoding technique was able to catch neural sources of uncer-
tainty in particular, we first investigated the link between decoded
uncertainty and behavioral variability across motion directions, using
Bayesian hierarchical regression to estimate the within-subject effect
of uncertainty on behavioral variability while accounting for individual
differences between participants (Fig. 3b). The judgments of motion
direction of our participants showed a classical oblique effect14–16:
observer responses were more variable at oblique compared to car-
dinal directions. Specifically, behavioral variability increased from
6.18° at cardinal to 9.42° at oblique directions (BF = 2:1 × 1015). Impor-
tantly, decoded uncertainty also increased from cardinal to oblique
directions of motion (entropy changed from 7.40 bits for cardinal to
7.49 bits for oblique, BF = 1:6× 1013), and this change in entropy across
directions was significantly correlated with behavioral variability,
b = 9.17, 95% HPDI = [4.73, 13.65], BF = 8:54 × 105 (b is the regression
coefficient). This indicates that across motion directions, the decoded

distributions reflect the precision of the information contained in
underlying neural activity.

Even when the stimulus is held constant, uncertainty varies on a
trial-by-trial basis due to random fluctuations in cortical activity. Is
there a relationship between uncertainty and behavior when between-
stimulus variability is accounted for? We tested if our approach cap-
tures trial-by-trial fluctuations in the fidelity of the cortical repre-
sentation by quantifying the effect of uncertainty on behavioral
variability in a hierarchical Bayesian regression model that accounted
for the oblique effect in addition to between-subject differences.
Decoded uncertainty again reliably predicted behavioral variability
(b = 5.93, 95% HPDI = [1.98, 9.96], BF = 157). Control analyses showed
that these results cannot be explained bymean BOLD amplitude, head
motion, gazefixationposition, and variability of gazefixationpositions
(Supplementary Fig. 5). This suggests that our decoder captures not
only between-stimulus uncertainty, but also fluctuations in the
quality of the underlying cortical representation on a trial-by-trial
basis (Fig. 3c).

Having established that the decoded distributions aremeaningful
and capture the degree of uncertainty in the underlying cortical
representation, we then turned to the shape of the distribution. To
what degree do the decoded distributions show evidence of an
advantageous estimation process in which velocity and orientation
signals are combined for estimates of motion direction? Our simula-
tions suggest that for such an advantageous decision process, the
mean decoded posterior across trials should be bimodal, with a larger
peak on the true direction and a smaller peak at the opposite direction
ofmotion (Fig. 2a). Indeed, this is whatwe foundwhenwe analyzed the
shape of the decoded posterior (Fig. 4a). When averaged across trials,
the decoded distributions had peaks located around the true (M = -
0.01°, 95% CI = [-0.13, 0.10]) and opposite (M = 178.69°, 95% CI =
[177.04, 180.00]) motion directions for 16 out of 18 participants (for
the remaining two participants, the average posterior was unimodal
and located at the true direction of motion). This similarly held
for individual visual areas, including hMT+ (Supplementary Fig. 6).
That is, on average, the decoded posterior is bimodal, matching our
predictions.

Our decoding approach further allowed us to more formally test
for the presence of bimodality and demonstrate that the same pattern
is observed on a trial-by-trial basis. This is important because, when
evaluated across trials, the bimodality in the averaged decoded

Fig. 3 | Direction decoding accuracy and decoded uncertainty in themain fMRI
experiment with low-noise (100% coherence) stimuli. a Decoded motion direc-
tions for an example observer (left) and a joint probability distribution of decoded
and presented motion directions across all observers (right). For the example
observer, each dot is a single trial. The dots along themain diagonal correspond to
decodeddirections that are relatively accurate,while dots along the lines parallel to
themain diagonalwith anoffset of ±180° degrees show trials onwhich the decoded
direction is opposite to the true direction.When aggregated across observers, each
pixel shows the probability of observing a certain decoded direction for a given
presentedmotiondirection.Most of the trials are decoded accurately (r =0.72), but
there is a noticeable increase in the probabilities of opposite directions of motion.
b Both behavioral variability (in blue) and decoded uncertainty (in green) increase

as a function of distance from cardinal motion directions (trials split into 15° bins
for illustrative purposes, b = 9.17, 95% HPDI = [4.73, 13.65], BF = 8:54× 105). Circles
denote mean across observers. Shaded regions show 95% confidence intervals.
c Behavioral variability on a trial-by-trial basis increases as a function of decoded
uncertainty after controlling formotion direction (b = 5.93, 95%HPDI = [1.98, 9.96],
BF = 157, with the effect of motion direction on behavioral variability included as a
regressor in the multiple regression model). Dots show the variability across trials
computed for eight equal-sized bins (indicated by color) and for each individual
observer (data split into bins for illustrative purposes only). The line shows the
effect of uncertainty estimated with a hierarchical Bayesian regression (without
binning) with 95% HPDI range indicated by the gray area.
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posterior might result from an aggregation of unimodal trials with
peaks concentrating either at the true or at the opposite direction. To
address this concern, we quantified the shape of the posterior for each
individual trial as a mixture of two von Mises components (basis
functions) and estimated the location of each component (i.e., its
mean). Fig. 4b shows how these locations are distributed across trials
(their joint distribution). This pattern of results is qualitatively very
similar to what is predicted when the posterior reflects both velocity
and spatial orientation signals, and rather distinct from when it would
be based on orientation or velocity signals alone (Supplementary
Fig. 7). To quantify these results, we estimated the number of clusters
in the observed pattern of location combinations. We modeled the
joint distribution of the peak locations with models that assumed one
to three independent clusters of peaks (see Methods). For example, a
model with a single cluster assumed that the peak locations on all trials
are similar (belong to a single bivariate von Mises distribution).
The best fit was provided by a two-cluster model (ΔWAIC against the
single-cluster model = 9741, BF>1020; adding a third cluster did not

significantly improve the fit, ΔWAIC = −0.2) with the first cluster cor-
responding to unimodal trials (the two peaks overlap and are located
at the true direction) and a second cluster corresponding to bimodal
trials (a larger peak at the true and a smaller peak at the opposite
direction). This bimodality in the posterior distribution was observed
for a significant portion of the trials (52% were allocated to the second
cluster). These results match themodel predictions (Fig. 2b) and show
that the bimodality in the decoded posterior is not an artifact of
aggregation, but rather is a property of the single-trial posterior. This
provides further support for our theoretical predictions: the presence
of orientation signals leads to a bimodal posterior distribution both on
average and in trial-by-trial analyses.

Next, we turned to the third prediction of the Bayesian observer
model: if the two peaks of the decoded distribution are relevant for
behavior (which would suggest that the observer uses spatial orien-
tation signals to estimate direction of motion), then there should be a
relationship between peak location and the direction and magnitude
of the error in the participant’s behavioral response. More specifically,
the relationship should be positive for either peak of the distribution.
Thus, when a first peak is shifted clockwise relative to the true direc-
tion of motion (or a second peak is shifted clockwise relative to the
opposite direction), the observed response should also be shifted
clockwise relative to the true direction. Testing this prediction
revealed that the location of either peak is indeed positively and reli-
ably correlatedwith the behavioral errors of our participants (the peak
located closer to the true direction: b =0.63, 95% HPDI = [0.40, 0.88],
BF = 2:46× 105; the peak located closer to the opposite one: b = 0.30,
95% HPDI = [0.10, 0.50], BF= 19.05; Fig. 3c). Control analyses showed
that these results cannot be explained by the direction in which sac-
cades aremade (Supplementary Fig. 8). Thus, the decodeddirection of
motion (i.e., the location of the first peak) reliably predicts the trial-by-
trial behavioral responses of our participants. Crucially, also the sec-
ond peak of the decoded distribution appears to be behaviorally
relevant, providing further support for the hypothesis that human
observers useorientation signals when they are estimating direction of
motion.

Follow-up psychophysical experiment
We then tested the final prediction of our model: when uncertainty is
high, also the behavioral estimates of the participants should follow a
bimodal distribution, much like their internal representation. In a
follow-up behavioral experiment, we increased levels of uncertainty
using stimuli in which only 18% of dots were moving in a single
direction while all other dots moved in random directions. The con-
ditions were otherwise identical to the fMRI study and the participants
performed the same task. We first confirmed that our manipulation
increased uncertainty. Indeed, participants performed on average
much worse than in the main study (a mean absolute error of
M = 41.02°, 95% CI= [33.42°, 49.44°] in this experiment against
M = 6.18°, 95% CI = [5.72°, 6.62°] in the main study, Supplementary
Fig. 9; but note that the mean error estimates are less informative for
this experiment because of the shape of the response distribution, as
we discuss next). Further analysis of the behavioral data revealed clear
bimodality in the behavioral estimates of our participants. Their
responses were clustered around not only the true direction (themain
diagonal in Fig. 5a, b), but also the opposite direction of motion (the
dashed lines parallel to themain diagonal in Fig. 5a, b). To quantify the
degree of bimodality in the behavioral responses, we fitted and then
compared twomodels equivalent to the descriptivemodels we used in
the analysis of the decoded posterior shape: 1) a unimodal (vonMises)
distribution centered on the true direction, and 2) a bimodal dis-
tribution mixture (two von Mises) with peaks centered at the true and
the opposite direction. Both models additionally included a uniform
component to account for random guesses. The models were first
fitted to each observer’s responses separately, and the results were

Fig. 4 | Bimodality in the posterior distribution decoded from fMRI signals.
aWhen averaged across trials, the decoded posterior distribution is visibly bimodal
for the majority of observers (gray lines show the across-trials average for each
observer, black line shows the mean posterior across observers, the example
observer from Fig. 3A is highlighted in orange). b Joint distribution of trial-by-trial
peak locations aggregated across observers. Brighter colors correspond to higher
probabilities of observing a certain combination of the larger and smaller peak
location. A large fraction of trials (52%) has the larger peak located around the
presented motion direction (0° on the abscissa) and the smaller peak around the
opposite direction (180°on theordinate).c Focusingonbimodal trials only (i.e., the
peaks of the decodeddistribution are located around the presented (between −90°
and 90°) and opposite motion directions (between 90° and 270°)), the location of
either peak is correlated with behavioral errors (“first” peak, located closer to the
true direction of motion: b =0.63, 95% HPDI = [0.40, 0.88], BF = 2:46× 105; “sec-
ond” peak, located closer to the opposite one: b =0.30, 95% HPDI = [0.10, 0.50],
BF = 19.05). For each observer, data were divided into eight equal-sized bins (illu-
strated by color).Dots show themeanbehavioral error across all trials in eachof the
bins. Please note that data were binned for illustrative purposes only. The lines
show the estimated effect (i.e., the regression coefficient) of peak location on
behavioral error based on a hierarchical Bayesian model, with the 95% credible
intervals in gray.

Article https://doi.org/10.1038/s41467-023-43251-w

Nature Communications |         (2023) 14:7634 6



then combined across participants. The bimodal model provided a
significantly better fit than a model consisting of a single peak (group
ΔBIC= 322). This indicates that across participants, the distribution of
behavioral responses is indeedbimodalwithpeaks centered at the true
and oppositemotion direction. That is, for higher levels of uncertainty,
the participants reported seeing dots moving in a direction opposite
from the true direction of motion. Altogether, this shows that human
participants use spatial orientation signals when estimating motion
direction, leading to a surprising bimodality not only in the repre-
sentations decoded from early visual cortex, but also in behavior.

Discussion
What neural computations enable human observers to infer the
direction in which an object is moving? Here, we argue that the ner-
vous system uses not only velocity but also spatial orientation signals
to estimate motion direction2. We implemented this hypothesis in a
Bayesian observer model and tested its predictions using a combina-
tion of psychophysics and fMRI. Using a generative model-based fMRI
analysis technique7,17, we decoded probability distributions of motion
direction from activity in areas V1-V4 and hMT+. Corroborating the
predictions of the Bayesian observer model, we discovered that the
decoded distribution of motion has a bimodal shape. Moreover, the
twopeaks of the distribution predicted themagnitude anddirection of
the participants’ behavioral errors. In a follow-up behavioral experi-
ment, we furthermore showed that this bimodal shape is also observed
in the distribution of the participants’ behavioral responses when
analyzed across trials, indicating that the participants sometimes
reported thedirection ofmotion opposite to the true one, aspredicted
by the Bayesian model. Altogether, this suggests that the nervous
system uses not only velocity signals, as assumed by dominantmodels
of motion perception (e.g.,18), but also spatial orientation cues to infer
motion direction.

It is interesting that the decoded direction of motion predicted
not only the presented direction of dot motion with relatively high
accuracy across the 360-degree motion feature space, but also the
subjective judgments of the observer, irrespective of the presented
stimulus. That is, the direction decoded from cortical activity pre-
dicted the participants’ behavioral errors on a trial-by-trial basis. This
suggests that the decoded representations are behaviorally relevant

and not an artifact of the fMRI measurements. This relationship
between cortical activity and behavior is reminiscent of previous
neurophysiological results showing a correlation between neural
activity and behavioral choices (“choice probability”19–23) – a link that is
often taken to indicate that the signals are used by the animal to
determine its decision. Our ability to predict the participant’s judg-
ments surpasses that of previous fMRI findings, and is likely due to our
use of the TAFKAP decoder, which improves decoding precision by
estimating not only voxel tuning properties, but also the voxel (co)
variance induced by the fMRI measurements and neural variability7,24.

Previous work has shown that the degree of imprecision in the
cortical representation of orientation17,25,26 and location27 can reliably
be decoded from fMRI activity patterns. The current study extends
these earlier findings by showing that also the fidelity of the cortical
representation of motion can be successfully characterized with fMRI.
That is, the decoder’s trial-by-trial estimates of uncertainty predicted
behavioral variability – a measure of perceptual imprecision. This
illustrates the versatility of the probabilistic decoding approach and
suggests that the neural code for uncertainty may be similar across
different visual features, such as motion, location and orientation.

As integrating fully correlated signals would make little sense
from a computational standpoint (no additional information would be
gained from doing so), our Bayesian model assumes that orientation
and velocity signals are conditionally independent. While full inde-
pendence is likely too strong an assumption for visual cortical neurons
(e.g., due to common retinal input), it seems nonetheless likely that a
good fraction of the noise added by post-retinal stages of processing
will not be shared – for example, because orientation and velocity
signals are processed in segregated visual pathways9,11 and by neurons
with different spatiotemporal receptive fields28–30. Computationally, as
long as some of the noise is independent, the estimate will be better
when signals are combined. Indeed, our results suggest that human
participants use such integration strategies, even when the cues are
likely partially correlated.

It is well known that fMRI signals reflect many forms of (corre-
lated) noise, in addition to the correlated sources of noise in the
orientation and velocity signals. For example, the amount of noise in
the orientation and velocity signals could fluctuate jointly due to fac-
tors such as attention or alertness. Voxel responses could also be
correlated due to non-neural sources of noise that are associated with
the fMRI measurements themselves, such as participant head motion.
However, none of these correlations can explain the observed rela-
tionship between the locations of the peaks in the decoded posterior
and the direction and magnitude of behavioral errors (Supplementary
Figs. 10 and 11). That is, for both scenarios, the predicted correlation
between the second peak location and behavioral errors would be
negative, much like the pattern shown in Fig. 2c (“velocity-only read-
out”). This is opposite to what we find in the data, further supporting
the conclusion that orientation signals are used by the observers in
their direction judgments.

Previous behavioral work has also suggested that the nervous
system might use spatial orientation signals to determine motion
direction2,5,6,31–35. For example, prolonged exposure to moving dot
stimuli creates aftereffects similar to the effects produced by
static gratings33, and removing information about streaks increases
thresholds for motion detection5. Other studies have highlighted
potential neural mechanisms that could give rise to motion streak
sensitivity9–11,29,36–40 or found preliminary evidence to suggest that
streak-based signals are represented in the human visual cortex41. Our
work extends these previous findings in several ways. Our normative
model explains why observers should use both velocity and spatial
orientation cues, as integrating these signals reduces uncertainty and
improves direction estimates. Themodel furthermoremade a number
of quantitative and qualitative predictions that we tested in experi-
ments. This revealed thatmotiondirection is represented in cortex as a

Fig. 5 | Follow-up behavioral experiment with decreased motion coherence in
the presented stimulus. a Estimates of motion direction for an example human
observer (each dot represents a single trial). While the observer is mostly accurate
(most dots lie along the diagonal), they also show a tendency to perceive dots as if
they were moving in the opposite direction (dots along the dashed lines). b Joint
probability distribution of the presented motion direction and the observer’s
judgment, aggregated across human observers. The overall pattern of responses is
the same as for the example observer: most responses match the presented
directions, but there is a noticeable increase in probability density along the lines
±180° off the diagonal (ΔBIC= 322 for a model comparison between a unimodal
(von Mises) distribution with responses centered on the true direction, and a
bimodal distribution mixture (two von Mises) with peaks centered at the true and
the opposite direction).
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bimodal probability distribution – a level of complexity that stands in
sharp contrast to previously observed probabilistic representations,
such as those for orientation and location17,25–27. No less important, we
discovered that the shape of the bimodal distribution is linked to the
participants’ behavioral estimates in various ways. Altogether, this
suggests that the human visual system uses spatial orientation signals
for determiningdirectionofmotion and reveals thehidden complexity
of probabilistic feature representations in cortex.

We also considered several alternative strategies to judging
direction ofmotion, in addition to the Bayesian observer and velocity-
only models (Supplementary Fig. 12). The first alternative model
assumed that the observer only uses velocity signals to infer motion
direction, with an arbitrary constant bias away from the velocity-
based estimate. However, this strategy cannot capture bimodality in
the decoded posterior distribution, nor does it explain the bimodal
behavioral response distribution as observed here. The secondmodel
assumed that observers combine spatial orientation and velocity
signals while ignoring uncertainty. That is, the response is a weighted
average of the velocity-based and orientation-based estimates, where
theweights are assigned randomly.While thismodel does capture the
bimodal behavioral response distribution for high levels of orienta-
tion noise, it wrongfully predicts a very wide behavioral response
distribution when the precision of velocity and orientation signals is,
respectively, high and low. This is inconsistent with behavioral data
from previous studies showing that observers perform relatively well
at slow motion speeds when orientation information is presumably
very noisy or even absent (e.g., 5). The third model assumed that
observers randomly switch between the orientation and motion
likelihoods when making the decision42. This model predicts that
bimodality is always observed, regardless of the degree of uncer-
tainty. Critically, this is not what we observe in our data, where
bimodality in the behavioral response distribution clearly depends on
stimulus reliability. Finally, we considered a strategy based on the
motion aftereffect. Here, the hypothesis is that observers experience
and report aftereffects after viewing the stimulus, which results in
behavioral responses that are opposite to the true direction of
motion. However, such a model would predict stronger aftereffects
with greatermotion coherence in the stimulus (so lower uncertainty),
because the strength of aftereffects is positively related to signal
strength (e.g., 43,44). Therefore, greater bimodality in behavior is
expected with greater certainty, which is opposite to our results. In
sum, none of the alternative models considered can explain the full
scope of our findings.

While our data suggest that observers combine velocity and
orientation cueswhen inferringmotion direction, we do not argue that
these cues are necessarily integrated optimally – that is, that each
estimate is perfectly weighted by its uncertainty. We believe it will be
difficult, if not impossible, to argue and test for optimality in this
particular situation. Themain reason for this is that it will be difficult to
infer the likelihood for the spatial orientation and velocity-based sig-
nals alone. That is, in a typical cue integration experiment, the like-
lihood of each cue is manipulated by the experimenter and therefore
(roughly) known. Thismakes it possible to predict what the behavioral
response should be for both the optimal integration strategy and
alternative strategies that ignore uncertainty. For the integration
problem considered here, however, the likelihoods are not a priori
known to the experimenter, and would have to be inferred from brain
data. An fMRI voxel, however, reflects the aggregate response of many
neural populations, where the responses from the individual popula-
tions are unknown. Without knowledge of the individual signals for
spatial orientation and velocity, their likelihoods cannot be calculated,
which makes it impossible to predict and compare between the
Bayesian and alternative integration strategies.

What neural mechanisms might underlie the observed bimodal
distribution in visual cortex? Studies in non-human primates9,10,29,36,37,

mice8 and cats10 have shown that many orientation-tuned neurons in
primary visual cortex respond to dots moving parallel to their spatial
orientation receptive field. It seems likely that similar neural response
properties could have led to the bimodal posterior distribution
observed here. Interestingly, also many direction-selective neurons in
V1 are tuned somewhat bimodally, with strong responses to one
motion direction and a weaker response to the opposite direction9,10.
To address whether these tuning properties could similarly give rise to
a bimodal posterior distribution, we simulated neural population
activity using a realistic range of direction selectivities (see Supple-
mentary Fig. 13). We found that the posterior distribution decoded
from the obtained population response is always unimodal and never
bimodal. This strengthens the hypothesis that the empirically
observed posteriors reflect the combined responses of direction-
selective neurons andorientation-tuned cellswhose spatial orientation
receptive field runs parallel to the presented motion direction.

Interestingly, we observed bimodal posterior distributions
throughout visual cortex (i.e., areas V1, V2, V3, hV4, and hMT+, see
Supplementary Fig. 6), with no clear differences between areas. It is
important to keep in mind, however, that the signal-to-noise ratio is
likely not constant across these regions, which makes it difficult to
draw firm conclusions from this finding. The signal-to-noise ratio also
makes it difficult to test which cortical areas integrate the velocity and
spatial orientation signals, as aunimodalposterior at the level of voxels
does not necessarily imply unimodality in the underlying populations
(Supplementary Fig. 14). Notwithstanding these considerations, it does
seem likely that all the areas investigated here should show at least
some degree of bimodality, as they all contain orientation and velocity
sensitive neurons (e.g., 11,28).

Our stimulus consisted of dots moving at 7 degrees visual angle
per second. Interestingly, this speed roughlymatches that of opticflow
in the natural environment. That is, for a person with eyes 1.5m above
the ground who is walking at 1.4m/s (the average walking speed), the
optic flow in the ground plane will be 7 deg/s at 5m to the left and
right. This suggests that the observed motion streak signals may be
highly relevant for the encoding of optic flow and other forms of real-
world motion. To capture more complex real-world scenarios, our
Bayesian model would have to be extended so as to also include, for
example, mechanisms of causal inference45. It would enable the
observer to determine whether or not the motion and orientation
signals share a common cause and should be integrated or rather
segregated, much like earlier mechanistic models have proposed
before2.

Our Bayesian decoding approach differs from previous methods
in that we explicitly describe the generative structure of the data – that
is, we model the effects on the cortical response for each stimulus. To
infer the range of motion directions that could have caused a given
cortical response (i.e., the posterior probability distribution), we sim-
ply invert this model using Bayes’ rule (see Methods). This contrasts
strongly with other decoding methods, such as SVM46 or IEM47, which
merely focus on the response’s single most likely interpretation. This
methodological difference may explain why previous fMRI decoding
studies46,48–50 did not observe bimodality in the across-trial histogram
of decodedmotiondirections: under low levels of uncertainty, thebest
guess estimate usually falls within a narrow range of the true direction
of motion, and hardly ever on the opposite motion direction. Alto-
gether, our findings show how fully characterizing the full probability
landscape can improve our understanding of the computational
mechanisms of cortical feature extraction.

Our work furthermore demonstrates the added value of visualiz-
ing cortical representations for understanding behavior. Crucially,
while the influence of spatial orientation signals on direction estima-
tion remained hidden in the participants’ behavioral estimates, their
effects were uncovered via the decoding of activity patterns in visual
cortex. That is, while the behavioral histograms showed bimodality for
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high-uncertainty conditions only, the decoded probabilistic cortical
motion representation nonetheless revealed that orientation signals
provide information about motion direction even when uncertainty is
relatively low. These results point to the veiled intricacy of perceptual
decision-making in a direction estimation task.

Furthermore, our results suggest that at even the earliest levels of
cortical processing, multiple sources of evidence are combined to
better represent the visual environment. It iswell known that the visual
system integrates multiple cues to infer visual properties for mid-level
object properties, such as depth or object shape1,4. At a first glance,
motion direction estimation may seem like a straightforward task,
devoid of the need for additional evidence – after all, why would
direction-sensitive neurons not provide sufficient information for
direction estimation (see, e.g., 51, for a review)? However, as we show
here, even for simple tasks the brain appears to utilize additional cues,
such as spatial orientation, to reduce uncertainty. This highlights the
fact that even simple tasks might be more intricate from the brain’s
perspective and that cue integrationmaybe aubiquitous feature of the
human visual system.

Methods
Participants
This study complies with all relevant ethical regulations and was
approved by the local ethics committee (Commissie Mensgebonden
Onderzoek Regio Arnhem-Nijmegen, The Netherlands; Protocol
CMO2014/288). Participants provided written informed consent
before participation and received monetary compensation for their
participation. 18 participants (aged 18-32, ten female, based on self-
report) with normal or corrected to normal vision participated in the
study. We did not test for differences in effect across gender, as it is
unlikely that this factor will underlie differences in low-level visual
cortical processing.

fMRI data acquisition
MRIdatawere acquired using a Siemens 3 TMAGNETOMPrismaFitMR
scanner with a 32-channel head coil located at the Donders Center for
CognitiveNeuroimaging. For eachparticipant andeach session, a high-
resolution T1-weighted magnetization-prepared rapid gradient echo
anatomical scan (MPRAGE, FOV 256 × 256, 1-mm isotropic voxels) was
collected at the start of the session. Functional imaging data were
acquired using T2*-weighted gradient-echo echoplanar imaging cov-
ering the whole brain (68 slices, TR 1500ms, TE 38.60ms, FOV 210 ×
210, slice thickness 2mm, in-plane resolution 2.019 × 2.019mm).

Experimental design and stimuli
fMRI experiment. The fMRI experimentwas runusing anASUSGL502V
laptop (OS Kubuntu 17.04) connected to a luminance-calibrated pro-
jector EIKI LC - XL100 (resolution 1024 × 768 pixels, refresh rate 60Hz).
Participants viewed the visual display through amirrormounted on the
head coil. The stimuli were generated, and the experiment was con-
trolled, using MATLAB and the Psychophysics Toolbox52–54.

The stimulus consisted of dots coherently moving in a pseudo-
randomly chosen direction (i.e., to ensure an even sampling of direc-
tions in each run, 18 evenly-spaced directions were selected from the
full 360 deg. rangewith a randomoffset andwerepresented in random
order during the run)within a circular aperture centered at the fixation
point (inner radius 1.5 degrees of visual angle, dva; outer radius 7.5 dva;
dot contrast reduced to0over theouter and inner0.5 dva radius of the
aperture). Each dot was white and had a Gaussian envelope with SD =
0.03 dva. There were 530 dots in total, resulting in an average density
of approximately 3 dots/dva2. The dot density was uniform within the
aperture. Each dot was moving at 7 dva/s and had a limited lifetime of
10 to 14 frames (167 to 233ms, randomly chosen for each dot). At the
end of a dot’s lifetime, it was pseudo-randomly repositioned in such a
way that uniform dot density was maintained.

Participants were required to maintain fixation on a bull’s eye
target (diameter 0.5 dva) throughout the experiment. Each run con-
sisted of an initialfixationperiod (12 s), followedby 18 trials (12.5 s each
with a 4-second inter-trial interval) and a final fixation period (12 s).
Each trial began with the disappearance of the fixation target, which
reappeared after 100ms. After another 400ms, the stimulus was
presented and remained on the screen for 1500ms. This was followed
by a 6 s fixation interval, after which a black line (length 0.9 dva)
appeared at fixation (Supplementary Fig. 15). The participants repor-
ted the direction of motion of the dots by rotating this line. They did
this by pressing the upper buttons on a Current Designs’ HHSC-2×4-C
fMRI response pad with the index fingers of the right and left hands.
The response window was 4.5 s in duration, and the line began to
dim after 3.5 s to indicate the approaching end of this window.
Participants received no trial-by-trial feedback about the accuracy of
their judgments.

The participants completed 39–49 stimulus runs during three
experimental sessions on separate days. Before the experiment, the
participants additionally participated in a 30-minute training session
outside the scanner to ensure that they understood the task. Each scan
session also included two visual localizer runs, which were used to
select voxels that responded to the retinotopic location of the stimu-
lus. The localizer stimulus consisted ofmoving dots presentedwithin a
circular aperture (described by the same parameters as the main
experiment; it did not include the retinotopic area in which the
response bar appeared). The dots were presented in seven 12-s inter-
vals (“stimulus interval”), interleaved with fixation intervals of equal
duration. During stimulus intervals, dot motion direction changed
every 1.5 s, resulting in 8 directions of motion per interval. The 8
directions were chosen pseudo-randomly in the same way as during
the main task. To ensure that participants paid attention to the loca-
lizer stimulus, they were asked to press a response button when the
stimulus briefly dimmed to 50% contrast. Dimming events lasted
500ms and appeared at random intervals with 2 to 7 seconds between
events.

Retinotopic maps of the visual cortex were acquired in a
separate scanning session using conventional retinotopic mapping
procedures55–57. To determine the cortical boundaries of hMT+ , we
used two functional localizers based on a combination of approaches
from previous studies50,58–60. Each localizer was repeated 3 to 7 times,
either within a separate session or combined with the retinotopy ses-
sion. For the first localizer, the participants viewed coherently moving
dots presented in seven 12-s intervals, interleaved with seven 12-s
intervals in which randomly-moving dots were presented. For the
second localizer, we contrasted dots moving inwards or outwards
from the fixation point (an optic flowpattern) with a static dot pattern,
again presented in interleaved fashion with 12-s intervals. For both
localizers, the dots had the same parameters as in the main fMRI
experiment (i.e., dot color: white; Gaussian dot envelope with SD =
0.03 dva; 530dots; dot density uniform; approximately 3 dots/dva2;
each dot moving at 7 dva/s; limited lifetime of 10 to 14 frames (167 to
233ms), randomly chosen for each dot). The dots were presented
within an aperture with a radius of 8.7 dva and no inner window (dot
contrast reduced linearly to 0 over the 0.5 dva outer radius of the
aperture). During the coherent motion presentation (first localizer),
the dots’ direction changed every 1.5 s (8 evenly-spaced directions
were selected from the full 360deg. range with a random offset, and
were presented in random order for each 12-s interval). During the
random motion presentation, each dot direction was selected ran-
domly. For the optic flow pattern (second localizer), motion direction
(inward or outward) changed every 1.5 s. For the static dot pattern, the
dots were generated using the same parameters as for the other
localizers but did not move. The dot pattern was generated anew
every 1.5 s. For both localizers, the same attention probes as for the
within-session localizer were used: participants were asked to press a
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response button when the stimulus briefly dimmed to 50% contrast
(dimming events lasted 500ms and appeared at random intervals with
2 to 7 seconds between events).

Follow-up psychophysical experiment. The follow-up behavioral
study was run using a luminance-calibrated LaCie Electron 22blue II CRT
display using the same laptop and software as in the fMRI experiment. A
chinrest was used to stabilize the participant’s head and reducemotion.
The experiment was run in a dark, soundproof roomwith the display as
the only light source. The task, run and trial structure, and stimuli were
the same as in the main fMRI experiment, except that only 18% of the
dots (randomly selected) on each trial moved in a single direction, while
the directions of the remaining dots were distributed uniformly (i.e.,
randomly sampled from a uniformdistribution). Participants responded
using the left and right arrow keys on a keyboard. Each participant
completed 12-20 runs within a single session.

Data pre-processing
Behavioral data. Cardinal biases (Supplementary Fig. 16) were removed
from the behavioral data by fitting four 4th-degree polynomials to each
observer’s behavioral errors as a function of motion direction. Specifi-
cally, we first determined bias direction by fitting two models that
described either attraction or repulsion fromcardinal directions. For the
model that describes attraction biases, the behavioral errors are
expected to be close to zero at cardinal directions, hence trials were
split into four 90-degree bins centered at cardinal ({0, 90, 180, 270}
degrees) directions. Dividing trials into bins enabled us to model the
discontinuity that arises from repulsive biases around cardinal (see
subject B in Supplementary Fig. 16 for an example; see also17,61). For each
bin, we then fitted a regression model with 4th-degree orthogonal
polynomials of motion direction (computed relative to the bin center)
as independent variables and behavioral error as the dependent variable
using the GAMLSS package in R62. To account for the heterogeneity of
responses across motion direction (e.g., the oblique effect), the stan-
darddeviation of the behavioral errorswas allowed to varywith distance
to the polynomial’s center. Accordingly, for each bin, we predicted the
mean and standard deviation of participant errors as a function of the
distance to the bin center. For the repulsion biases, on the other hand,
the errors are expected to be close to zero at oblique directions. Hence,
trials were split into four 90-degree bins centered at oblique ({45, 135,
225, 315} degrees) directions, but all remaining steps were identical.
Both polynomial models were fitted to the data of each bin using
maximum likelihood estimation. To remove the bias, the best fitting
model (i.e., either attraction or repulsion bias) as indicated by their
likelihood was selected. We used the residuals of these fits in sub-
sequent analyses.We verified that our conclusions remain the same if no
bias correction is applied. Errors that were larger than ±3 times the
predicted standard deviation (obtained from the regression models
described above) were considered outliers and not included in sub-
sequent analyses (0.7% of all trials).

fMRI data. Functional images were motion corrected using FSL’s
MCFLIRT63 and passed through a high-pass temporal filter with a cut-
off period of 50 s to remove slow drifts in the BOLD signal. Residual
motion-induced fluctuations in the BOLD signal were removed
through linear regression, based on the alignment parameters gener-
ated by MCFLIRT. Functional volumes were aligned to an unbiased
within-subject anatomical template, which was created using the par-
ticipant’s anatomical templates as obtained in each scanning session
and FreeSurfer’s longitudinal processing stream64–66.

Regions of interests (ROIs) were defined using standard retino-
topic procedures55–57 (visual areas V1, V2, V3AB, and hV4) and a func-
tional localizer (hMT+). Specifically, for each individual participant,
hMT+ was delineated manually on the inflated cortical surface as the
area that included voxels responding more strongly to both 1) moving

(i.e., optic flow patterns) rather than static dots (p < .05, FDR-cor-
rected), and 2) coherent rather than random motion (p < .05, FDR-
corrected; see Supplementary Fig. 17 for an example participant).
Unless otherwise specified, individual ROIs were combined into a sin-
gle ROI for the main analyses.

Voxels that responded to the retinotopic location of the stimulus
were selected based on the within-session stimulus localizer. Specifi-
cally, within the native space of each participant, we selected all voxels
within the ROI that were activated by the within-session stimulus loca-
lizer at a lenient threshold of p < .01 (uncorrected). The BOLD response
of each voxel and time point within a given trial was z-normalized using
the corresponding time points of all trials within the run. Activation
patterns for each trial were defined by averaging together the first 4.5 s
(3 TRs) of each trial, after adding a 3-s (2 TRs) temporal shift to account
for the hemodynamic delay (Supplementary Fig. 18). Control analyses
verified that the results were similar for individual visual areas (Sup-
plementary Fig. 6), and not strongly affected by changes in the number
of voxels selected for analysis (Supplementary Fig. 19). We furthermore
confirmed that the selected time window was close to the peak of the
hemodynamic response function (Supplementary Fig. 18).

For the control analyses involving head motion (Supplementary
Fig. 5), we calculated for each participant and at each time step, the
squared root of the sum of squares (i.e., the Euclidean norm) of the
temporal derivatives of the realignment parameters as estimated by
the motion correction algorithm; this quantity reflects the amount of
head motion per time step. To obtain a measure of head motion per
trial, the data were subsequently averaged across the trial’s first 4.5 s,
similar to our main analysis.

Decoding analysis
We used a generative model-based method for estimating the degree
of uncertainty in the cortical representation. This method (called
TAFKAP7,17,24) computes the posterior distribution of motion direction
from a given cortical response as measured with fMRI.

Generative model. The TAFKAP decoding algorithm assumes that
BOLD activity varies randomly from trial to trial around a fixed
stimulus-dependent mean that is different for each voxel:

bi = f i sð Þ+ εi ð2Þ

where bi is the response of voxel i, f iðsÞ is the voxel’smean response to
stimulus s, and εi reflects random noise.

The mean response of the i-th voxel as a function of stimulus s
(i.e., the voxel’s “tuning function,” f iðsÞ) is modeled as a weighted sum
of K =8 bell-shaped basis functions:

f i sð Þ=
XK
k

W ikgk sð Þ ð3Þ

gk sð Þ=max 0, cos s � φk

� �� �5 ð4Þ

whereφk is thepreferredmotiondirectionof the k-th basis function (in
radians), and the K φk ’s are spread evenly across the 2πmotion space.

Around its tuning function f i sð Þ, each voxel is assumed to fluc-
tuate randomly due to Normally distributed noise εi. This noise is
described by covariance matrix Ω, such that ε ∼Nð0,ΩÞ. The prob-
ability of cortical activity pattern b= bi

� �T is therefore given by

p b j s,θð Þ=N f sð Þ,Ωð Þ

where θ= W,Ωf g describes the model’s free parameters (determined
by the data), and f sð Þ= f iðsÞ

� �
are the voxel tuning functions (viaW also

determined by the data).
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The covariancematrix of this multivariate Normal distribution was
obtained as follows. Ideally, wewould have used the sample covariance.
However, when the number of voxels is larger than the number of trials,
the estimation of the sample covariance matrix is non-invertible. To
improve the estimation of the covariance matrix, TAFKAP therefore
uses a concept called “shrinkage.” Specifically, the model’s covariance
matrix Ω is modeled as the sample covariance matrix Ωsample “shrunk”
towards a parametrized theoretical covariance matrix Ω0:

Ω= λΩsample + 1� λð ÞΩ0 ð5Þ

where λ is a shrinkage parameter. The sample covariance is defined as
follows:

Ωsample =
1

Ntrain
B� ŴG

� �
B� ŴG

� �T

And given TAFKAP’s assumptions, the theoretical matrix Ω0 is
given by:

Ω0 = σ
2WWT + 1� ρð Þdiag τ2

� �
+ρττT ð6Þ

where the first component (σ2WWT) describes variance shared among
similarly-tuned voxels, the second component ( 1� ρð Þdiagðτ2Þ)
describes independent sources of variance, and the third component
(ρττT) captures noise shared globally across all voxels. The τ2i
parameter in TAFKAP is given by:

τ2i = λvarmedian τ 02
� �

+ 1� λvar
� �

τ02i ð7Þ

where λvar is another shrinkage parameter. Please see ref. 17 for the
derivation of the theoretical covariance matrix, and ref. 7 for further
detail and rationale regarding TAFKAP’s shrinkage estimation of the
model’s parameters.

Training and testing. Model parameters were estimated for each
individual participant in a leave-one-run-out cross-validation proce-
dure. That is, themodel’s freeparameterswerefirst estimated from the
data of all but one run, and then the remaining runwas used to decode
posterior distributions on a trial-by-trial basis. Each run was used as a
test set once. While training the model, TAFKAP uses “bootstrap
aggregating”or “bagging” to take the uncertainty ofmodel parameters
into account. Specifically, trials in the training set were resampled
many times (with replacement) to generate resampled data sets, each
of which had the same number of trials as the original set. Model
parameters were estimated for each set using ordinary least squares
(see details in7). For each trial in the test set, the posterior distribution
over motion direction was subsequently computed, conditioned on
the fittedmodel parameters for a given bootstrapped training sample.
The posterior distribution was obtained using Bayes’ rule:

p s jb, θ̂
� �

=
p b j s, θ̂
� �

p sð ÞR
p b j s, θ̂
� �

p sð Þds
ð8Þ

where the prior pðsÞ was flat (reflecting the uniform distribution of
motion directions in the experiment) and the normalizing constantR
p
�
b j s, θ̂�p sð Þds was estimated numerically. The posterior distribu-

tion was then averaged across each of the bootstrapping iterations to
obtain one posterior per test trial. We took the circular mean of the
decoded distribution as the estimated motion direction, and its
entropy as a measure of uncertainty.

Statistical procedures
Benchmarking analyses. When analyzing decoding accuracy, we
computed the circular correlation coefficient between the decoded

and the true direction for each participant. We applied the Fisher
transformation to individual coefficients and computed a Bayesian t-
test on the transformed values. We used the standard (recommended)
conservative priors in our Bayesian statistical analyses67,68, both here
and in the remaining analyses. Themean correlation coefficient across
observers and its confidence intervals were computed on Fisher-
transformed individual coefficients and the resulting values were
transformed back to the correlational scale for reporting.

For analyses relating trial-by-trial uncertainty to behavioral varia-
bility, we used a Bayesian hierarchical regression with the brms67

library in R. The analysis across motion directions included the bias-
corrected squaredbehavioral error as thedependent variable. Trial-by-
trial uncertainty (demeaned across all trials for each individual parti-
cipant)was used as an independent variable, both as a population-level
(fixed) effect and as a participant-level (random) effect along with
participant-level (random) intercepts. This design allowed us to esti-
mate the within-subject effect of uncertainty on behavioral variability
while accounting for individual differences between participants. In
the second set of analyses, we additionally controlled for differences
betweenmotion directions by including the oblique effect (distance to
the nearest cardinal direction) in the model, both at the population
and participant levels. In control analyses, we log-transformed the
squared behavioral errors to account for the non-normality of their
distribution; this did not change any of our conclusions.

Analyses of the shape of the decoded distribution. To test the pre-
dictions about the number of peaks in the decoded posterior (see
Results; Bayesian observer model), we first fitted, for each subject, a
descriptive bimodal model to both the mean posterior across trials
and to single-trial posteriors. The model enabled us to estimate the
location of the distribution’s two peaks without any additional
assumptions about the relationship between thesepeaks. Themodel is
a mixture of two von Mises distributions and a circular uniform dis-
tribution:

f ðx; λ,α,μ1, κ1,μ2, κ2Þ= 1� λð Þ αfVM x; μ1, κ1

� ��
+ 1� αð Þ fVM x; μ2, κ2

� ��
+ λUcircular

ð9Þ

where λ is the weight of the uniform component, α is the relative
weight of the first von Mises component, and μi and κi are the mean
and precision of the respective component. The probability density
function fVM is a von Mises distribution and has two parameters,
location (mean, μi) and precision (κi):

fVM ðx; μ, κÞ=
eκ cos x�μð Þ

2πI0 κð Þ ð10Þ

where I0 is a modified Bessel function of order 0. Because the com-
ponent labels in this model are arbitrary, we disambiguate the com-
ponents basedonwhich one is larger (i.e., is higher at themaximum)or
which one is located closer to the true direction of motion.

The model was fitted by minimizing the Jensen-Shannon diver-
gence (JSD, a symmetrized version of the Kullback–Leibler divergence)
between the decoded posterior and the model. The parameters were
minimally constrained to avoid degenerate solutions: κi 2 ½0:001,100�,
α 2 ½1 × 10�5, 1� 1 × 10�5�, λ 2 ½0,0:9�. To avoid local minima and assess
the uniqueness of the solutions, we ran the optimization algorithm 100
times for each trial using random starting parameters, and computed
the circular standard deviation of the estimated component locations
across optimization runs. We found the solutions to be fairly unique.
The SD across the estimated locations, averaged across trials and par-
ticipants, was 0.15° for the larger component and 1.23° for the smaller
component, for solutions with the JSD up to 5% larger than the optimal
solution to allow for small numerical errors. The results were similar
when the components were disambiguated based on the closeness to
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the true direction rather than their height. Thus, while some trials did
not result in a unique description of the decoded posterior (e.g., this
might happen for a uniform posterior), most decoded posteriors were
consistent with a unique description of component locations.

For the analyses of the mean posterior distribution, we averaged
the posterior distribution across trials for each observer. We then
estimated the best-fitting parameters for Eq. 9 as described above and
computed the mean across observers and confidence intervals for
both peak locations.

For analyses of peak location on a trial-by-trial basis, we did not
categorize the trials into unimodal or bimodal based on the number of
peaks in the single-trial posteriors. Instead, we use peak location to
have objective, quantitative criteria for posterior shape analyses. That
is, any goodness-of-fit measure is based on a statistical model (which
describes how the data is generated so that the model’s likelihood can
be estimated). However, it is not clear how best to describe the sta-
tisticalmodel for amixtureof functions that arefitted to the single-trial
decoded posterior. This is why we tested for peak location instead, as
the statistical model for peak location is much better understood.
Specifically, we first fitted the von Mises mixture model (Eq. 9) to the
trial-by-trial decoded posteriors for each individual participant. This
gave us two peak locations for each trial, which are plotted as a joint
probability distribution of peak locations across trials in Fig. 4c. For
comparison, Supplementary Fig. 7 shows the predicted probability
distributions for the fMRI data assuming that only orientation, only
velocity or both signals are used. We then fitted two bivariate von
Mises mixture models to the joint distribution of peak locations using
the BAMBI package in R69. The first model assumed that all location
pairs belong to the same bivariate distribution (that is, a single cluster
of trials is present) while the second assumed that they are best
described as a mixture of two distributions (two clusters are present).
We compared the models fits using theWatanabe–Akaike information
criterion (WAIC).

To analyze the relationship between behavioral errors and the
locations of the first and secondpeak in the decodedposterior,wefirst
selected trials for which one of the peaks was closer to the true (−90°
to 90°) and the otherwas closer to the opposite (90° to 270°) direction
of motion (this selection criterion is conservative as it excludes trials
for which both peaks correspond to approximately the samedirection,
that is, the “unimodal” trials). The peak locations were then trans-
formed as μ0 = sin π

90μ
� �

to account for the non-linear circular rela-
tionship predicted by the Bayesian observermodel. In other words, we
transformed the axes because of a non-linearity in the model predic-
tions, which arises because of the circularity of the motion space. One
(standard) way to linearize a circular variable is to apply a sine- and
cosine-transformation (this is, for example, also done in a standard
circular-circular regression). Because the model predictions are linear
in the sine-transformed space (as shown in Fig. 2c), the transformation
simplified our subsequent analyses. Next, we estimated the relation-
ship between the transformedpeak locations and thebehavioral errors
using a Bayesian hierarchical regression model that included beha-
vioral errors as the dependent variable and the two peak locations as
independent variables at both population-level (fixed) and participant-
level (random) effects, as well as participant-level (random) intercepts.

Follow-up psychophysical experiment. In the analyses of the follow-
up behavioral experiment, we compared two models fitted to the
behavioral errors of each participant. We expected that if participants
use both orientation and velocity signals, then there should be two
peaks in the error distribution at the true and the opposite direction of
motion. Accordingly,wefitted a vonMisesmixturemodel (Eq. 9) to the
behavioral error distribution with peak locations constrained to the
true (μ1 = 0

�) and opposite direction (μ2 = 180
�). Alternatively, if

observers do not use spatial orientation signals in their decision, there
should be just one peak at the true direction of motion. For this

alternative hypothesis, wefitted a single-peakvonMisesmodel (α = 1 in
Eq. 9). Both models included a uniform noise component. Because
we fitted the model to the behavioral errors (rather than the decoded
posterior distribution), we used a maximum likelihood (MLE)
approach with the DEoptim package in R70 instead of the JSD-based
approach. The models were fitted to the data of each individual par-
ticipant, and Bayesian information criterion (BIC) differences were
summed across participants for the group-wise inference.

Eye tracking data
Eyemovementswere recordedduring themain fMRI experiment using
an SR Research Eyelink 1000 eye tracker with 1000Hz sampling rate
and used for control analyses (Supplementary Figs. 5 and 8). After
removing blinks, four variables were computed for the first 4.5 s of
each trial. First, we computed gaze position as the absolute Euclidian
distance between the fixation point (the screen center) and the mean
gaze position within this time period. Second, we computed gaze
position variability as the mean absolute Euclidian distance between
point-by point gaze position and the mean position within this time
period. Third, we computed the circular mean of saccade direction.
Finally, we computed themean axis of saccade direction as the circular
average of all saccade directions wrapped in a 180-degree space.

Bayesian observer models
The goal is to infer the direction of motion from noisy sensory signals.
We consider two observer models for this task. The Bayesian observer
model uses both the velocity and the spatial orientationmeasurements
to estimate motion direction. The velocity-only model bases the
judgments on velocity signals alone. Both models are described in
three steps. First, we define the generative model that describes how
the stimulus generates the velocity and orientation measurements of
the observers. Second, we describe how eachobserver infers the range
of motion directions that are likely given their measurement(s) – that
is, how they compute the posterior distribution. The Bayesian model
performs inference using both cues, whereas the velocity-only model
only uses the velocity signals and ignores the spatial orientation
measurements altogether. Finally, each observer selects their response
given the computed posterior distribution combined with a cost
function that determines how “bad” or costly potential errors are.

Generativemodel (bothmodels). To infer the direction ofmotion sof
the stimulus, the observer measures its velocity (xV ) and spatial
orientation (xO) signals. These measurements are noisy, and are
therefore best described as being drawn from a probability distribu-
tion; p xV j s� �

and p xO j s� �
for the velocity and spatial orientation

signals, respectively. For velocity, we define the measurement prob-
abilities as a von Mises (VM) distribution:

p xV j s� �
= fVM xV ; s, κV

� � ð11Þ

fVM ðx; s, κÞ=
eκ cos x�sð Þ

2πI0 κð Þ ð12Þ

where I0 is a modified Bessel function of order 0, and κ is a precision
parameter. Note that higher precision corresponds to lower circular
standard deviation, σ:

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 log

I1 κð Þ
I0 κð Þ

	 
s
ð13Þ

For spatial orientation, the measurement distribution p xO j s� �
is

similar to the velocity measurement distribution, but wrapped in the
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180° orientation space. It is defined as follows:

p xO j s� �
= fVM xO; s, κO

� �
+ fVM xO; s +π, κO

� � ð14Þ

for any xO 2 0,π½ Þ. Note that this function is unimodal in the orienta-
tion space, but bimodal in direction of motion. While this particular
shape of the distribution is chosen to simplify the later analytical
derivations, in principle any bell-shaped circular distribution can be
used with qualitatively similar predictions.

Finally, the probability distribution of the stimuli (i.e., the prior
distribution pðsÞ) is assumed to be a circular uniform distribution,
f UC sð Þ, corresponding to the uniformdistribution ofmotion directions
used in our task:

p sð Þ= f UC sð Þ= 1
2π

ð15Þ

Together, p sð Þ, p xM j s� �
and p xO j s� �

define the generativemodel
of how themoving stimulus gives rise to themeasurements in our task.

Inference (Bayesian model). To infer the motion direction of the
stimulus from the noisy sensorymeasurements, the Bayesian observer
inverts the generative model. In other words, this observer estimates
the most likely causes for the observed measurements by calculating
the likelihood L s j xV , xO

� �
of different stimulus values given the velo-

city and orientation measurements. The likelihood function given the
velocity measurement alone is computed as follows:

LV s j xV

� �
=p xV j s� �

= fVM s; xV , κV

� � ð16Þ

while the likelihood given the orientation measurement is:

LO s j xO

� �
= fVM s; xO, κO

� �
+ fVM s; xO +π, κO

� � ð17Þ

with the locations of the two peaks separated by 180 degrees (π
radians). Note that a horizontal orientation measurement is equally
likely to be caused by a stimulus moving left and by a stimulus moving
right. Hence, in the motion feature space, the likelihood becomes
bimodal.

The Bayesian observer estimates the posterior distribution of
motion direction s, p s j xV , xO

� �
, by computing the product of the

stimulus likelihood L s j xV , xO
� �

and the prior distribution p sð Þ:

p s j xV , xO
� � / L s j xV , xO

� �
p sð Þ ð18Þ

Given that in our case the priorp sð Þ is uniform, it can be subsumed
under the proportionality sign:

p s j xV , xO
� � / Lðs j xV , xOÞ ð19Þ

In words, the posterior distribution is proportional to the like-
lihood of stimulus motion direction given the two measurements.
Assuming that the velocity and orientation measurements are inde-
pendent (the results are qualitatively similar if they are correlated,
Supplementary Fig. 1), the likelihood Lðs j xV , xOÞ is:

L s j xV , xO
� �

= LV s j xV

� �
LO s j xO

� � ð20Þ
Given the bimodality of the orientation-based likelihood, the

likelihood given both measurements is bimodal, as well:

L s j xV , xO

� �
= fVM s; xV , κV

� �
fVM s; xO, κO

� �
+ fVM s; xO +π, κO

� �� � ð21Þ
Using Eq. 18 and 21 and properties of the von Mises distribution

(see details in Supplementary Methods), we reformulate the posterior
distribution as a weighted sum of two von Mises probability density
functions, A and B, with weights (wA,wB), means (θA, θB) and precision

(κA, κB) depending on the precision of the velocity and orientation
components and the distance between their locations:

p s j xV , xO
� �

=wA fVM s; θA, κA

� �
+wB fVM s; θB, κB

� � ð22Þ

Eq. 22 shows how the posterior can be described as a mixture of
two components, which is useful when we quantify the shape of the
posterior on a trial-by-trial basis (Eq. 9).While the equations specifying
the parameters are given in the Supplementary Methods, we highlight
three specific cases to provide an intuition about the posterior. First,
when the variance of the velocity measurements is relatively low (that
is, κV is high), the weight of the second component wB approaches
zero, so that the posterior becomes a unimodal vonMises distribution.
In contrast, if the variance of the velocity measurements is high (κV is
approaching zero) and the variance of the spatial orientation mea-
surements is relatively low (κO is high), the posterior becomes bimodal
of shape with two identical peaks at the true and opposite motion
direction. Finally, when both velocity and orientation measurements
are highly variable (both κO and κV are close to zero), the posterior
becomes close to uniform (Supplementary Fig. 2).

Decision-making (Bayesian model). To judge the stimulus’ direction
ofmotion, the Bayesianobserver estimates the relative cost associated
with each response, as defined by the cost function combined with the
posterior distribution. Which cost function is sensible for the decision
about motion direction? An object moving in a given direction cannot
simultaneously move in the opposite direction, hence if the posterior
is bimodal, only one of the peaks would correspond to the true
direction of motion, while another is just a by-product of the orien-
tation signals. This suggests that a sensible strategy would be to use a
delta cost function, selecting themost probable direction according to
the posterior:

ŝMAP = argmax p s j xO, xV
� �� � ð23Þ

Note that the mean squared-error cost function (which corre-
sponds to taking the mean of the posterior) would be somewhat
problematic for high-noise scenarios in which bimodality is observed,
because the mean of a bimodal distribution falls in between the two
peaks – it would create a paradoxical situation in which the true sti-
mulus is never chosen as the response. Please also note that if the
peaks in the posterior are well-separated, the MAP estimate matches a
heuristic two-step strategy, by which observers first select the orien-
tation peak that is more probable given the velocity peak location, and
then estimate the true direction by combining this orientation peak
and the velocity peak with any symmetric cost function (e.g., squared
error). In other words, if observers use velocity estimates to dis-
ambiguate the orientation signals, and velocity signals provide rela-
tively precise information, then the resulting estimate is the same as
the maximum a posteriori (MAP) from the full posterior. The same
results are also obtained when the velocity and orientation likelihoods
are computed in a 180-degree space, and a separate binary variable
(obtained from the velocity measurement xV ) indicates which half of
the 360-degreemotion spacemost likely contains the true direction of
motion.

Given this decision strategy, what shape should we expect
for the distribution of behavioral responses over trials? The dis-
tribution of maximum a-posteriori estimates is linked to the poster-
ior distribution. When the velocity measurements have relatively
low variance, the weight of the component corresponding to the
opposite motion direction in the posterior (wB) will approach zero
and become negligible. The posterior distribution is then just the
product of two unimodal likelihoods computed from the velocity
and orientation measurements. In this case, the distribution of
MAP estimates can be approximated by a von Mises distribution
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(Murray & Morgenstern, 2010) with:

ŝMAP = xV � atan2 sin xM � xO
� �

,
κV

κO
+ cos xV � xO

� �	 

ð24Þ

μMAP = s ð25Þ

κMAP = κO + κV ð26Þ
That is, on a trial-by-trial basis, themaximumaposteriori estimate

depends on the velocity and orientation measurements (xM and xO)
and the variability of these direction estimates is inversely related to
precision parameters κO and κV . Across trials, the distribution of the
estimates is centered on the true stimulus (s) and its precision κMAP is
equal to the sum of the motion and orientation precision parameters.
However, if the velocity measurements are highly variable, this
approximation no longer holds, and simulations are necessary to
assess the across-trial distribution of responses and its relationship
with the parameters of the posterior.

Inference (velocity-onlymodel). The velocity-onlymodel follows the
same inference steps but relies only on velocity estimates. First, the
observer estimates the most likely causes for the observed mea-
surements by calculating the likelihood LV s j xV

� �
of different sti-

mulus values given the velocity measurements (Eq. 16, repeated here
for convenience):

LV s j xV

� �
=p xV j s� �

= fVM s; xV , κV

� �
The observer then estimates the posterior distribution of motion

direction s p s j xV
� �

by computing the product of the stimulus like-
lihood LV s j xV

� �
and the prior distribution p sð Þ:

p s j xV
� � / L s j xV

� �
p sð Þ ð27Þ

Given that in our case the priorp sð Þ is uniform, it can be subsumed
under the proportionality sign:

p s j xV
� � / Lðs j xV Þ ð28Þ

In words, for the velocity-only model, the posterior distribution is
proportional to the likelihood of the stimulus given the velocity
measurements.

Decision-making (velocity-only model). For the velocity-only model,
any symmetric cost function (e.g., squared error or delta function)
would result in the same decision. For consistency, we used the delta
cost function, as we did for the Bayesian observer model:

ŝvelocity = argmax p s j xV
� �� �

ð29Þ
The maximum of the posterior for the von Mises distribution lies

at the measurement value, and the across-trial distribution of the MAP
estimates is a von Mises distribution centered at the stimulus with
precision κV .

Simulations. To obtain the predictions shown in Fig. 1b, we first
simulated the posterior distribution for all of the possible combinations
of the velocity and orientation standard deviation parameters spanning
the range from3° to 100° in 8 steps, σV ,σO 2 3,5,10,20,30,40,60,100f g.
For each of the combinations, 10,000 trials were simulated using the
measurement distributions for velocity and orientation (Eqs. 11, 14). The
posterior distribution was calculated as described above (Eq. 21). For
each trial, we obtained the MAP (maximum a-posteriori, i.e. the obser-
ver’s judgment of motion direction) estimate by locating themaximum
of the generated posterior on a 0.5°-step grid. For the velocity-only

model, the same simulated measurements were used but the inference
was based on the velocity measurements alone (Eqs. 28, 29). The same
simulated data was used for Fig. 2a and d, with the results split into low
and high levels of uncertainty in the velocity likelihood. Fig. 2a com-
pares low levels of uncertainty (i.e., using a 30� cutoff for σV ) with high
levels of uncertainty (i.e., σV>30

�). Fig. 2d shows the results for high
levels of uncertainty (i.e., σV>30

�).
To facilitate a direct comparison with the posterior distribution

decoded from the brain data (see Fig. 2b and c), in a second set of
simulations, we simulated posteriors that are corrupted by additional
(i.e., non-neuronal) sources of noise due to the fMRI measurements.
MRI noise was modeled as independent noise on the observer’s
internal measurements, drawn from a vonMises distribution centered
on 0, and with precision parameters κ0

V and κ0
O for the velocity and

orientation measurements, respectively. This resulted in the following
“decoded” likelihood:

L s j xV , x
0
V , xO, x

0
O

� �
= fVM s; xV + x0V , κV + κ0

V

� �
fVM s; xO + x0O, κO + κ0

O

� ��
+ fVM s; xO + x0

O +π, κO + κ0
O

� ��
ð30Þ

where x’V and x’O refer to random noise offsets caused by the fMRI
measurements. Importantly, fMRI noise affected only the decoded
likelihood andMRImeasurements; the observer’s measurements were
unaffected by this particular form of noise.

For these simulations (Fig. 2b and c), the observer’s measurements
were drawn independently from two von Mises distributions (one for
velocity and one for orientation). Because neural uncertainty varies on a
trial-by-trial basis, the precision parameters of these von Mises dis-
tributions fluctuated across trials. Namely, on each trial κV and κO were
drawn independently froma log-normaldistributionwithμneur =3:8 and
σneur =0:6. Parameter values were chosen such that the predicted dis-
tribution of behavioral responses (Eq. 24) matched the variability of the
human participants’ responses across trials (as estimated from the
empirical data). These parameterswere used in themodel to predict the
model’s behavioral responses. The additional noise in the fMRI mea-
surement of the observer’s cortical representation (κ0

V , κ
0
O) was also

drawn randomly from a log-normal distribution with μMRI, velocity =0:9
and σMRI, velocity = 1:1 for velocity, and μMRI, orientation = 1:4 and
σMRI,orientation =0:7 fororientation. Theseparameter valueswere chosen
so as tomatch the actual posterior distribution decoded from the brain
data (Eq. 30, obtained via searchingon aparameter gridwith0.1 step for
all four parameters). For the velocity-only model, the same simulated
measurementswereused, but theobserver’s decisionwasbasedonly on
the likelihood computed from the velocity signals (Eqs. 28, 29).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Preprocessed behavioral and fMRI data of individual participants
generated in this study have beendeposited in theDondersRepository
database: https://doi.org/10.34973/yk4k-tp4171. This includes the data
necessary to reproduce the figures. These data are available open
access. The raw fMRIdata are protected and are available upon request
from the last author (Janneke F.M. Jehee) due to data privacy regula-
tions. Requests for data will be answered within a reasonable time-
frame (1 month).

Code availability
Custom code for data analysis can be obtained via the Donders
Repository: https://doi.org/10.34973/yk4k-tp4171. Custom code for the
probabilistic decoding technique can also be found at https://github.
com/jeheelab/72.
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